Generation of Corneal Epithelial Cells from Induced Pluripotent Stem Cells Derived from Human Dermal Fibroblast and Corneal Limbal Epithelium
نویسندگان
چکیده
Induced pluripotent stem (iPS) cells can be established from somatic cells. However, there is currently no established strategy to generate corneal epithelial cells from iPS cells. In this study, we investigated whether corneal epithelial cells could be differentiated from iPS cells. We tested 2 distinct sources: human adult dermal fibroblast (HDF)-derived iPS cells (253G1) and human adult corneal limbal epithelial cells (HLEC)-derived iPS cells (L1B41). We first established iPS cells from HLEC by introducing the Yamanaka 4 factors. Corneal epithelial cells were successfully induced from the iPS cells by the stromal cell-derived inducing activity (SDIA) differentiation method, as Pax6(+)/K12(+) corneal epithelial colonies were observed after prolonged differentiation culture (12 weeks or later) in both the L1B41 and 253G1 iPS cells following retinal pigment epithelial and lens cell induction. Interestingly, the corneal epithelial differentiation efficiency was higher in L1B41 than in 253G1. DNA methylation analysis revealed that a small proportion of differentially methylated regions still existed between L1B41 and 253G1 iPS cells even though no significant difference in methylation status was detected in the specific corneal epithelium-related genes such as K12, K3, and Pax6. The present study is the first to demonstrate a strategy for corneal epithelial cell differentiation from human iPS cells, and further suggests that the epigenomic status is associated with the propensity of iPS cells to differentiate into corneal epithelial cells.
منابع مشابه
Comparison of Ultra Structure and Gene Expression of Cultured Limbal Stem Cells and Fresh Conjunctival, Limbal and Corneal Tissues
Purpose: The present study intends to show the characteristics of cultured limbal stem cell (CLSCs) and to compare them with normal Conjunctival (C), Limbal (L) and Cornea (K) tissues. Materials and Methods: The expressions of a set of genes potentially involved in differentiation and stemness function of limbal stem cells were assessed in freshly prepared limbal, corneal, and conjunctival tis...
متن کاملHuman induced pluripotent stem cell differentiation and direct transdifferentiation into corneal epithelial-like cells
The corneal epithelium is maintained by a small pool of tissue stem cells located at the limbus. Through certain injuries or diseases this pool of stem cells may get depleted. This leads to visual impairment. Standard treatment options include autologous or allogeneic limbal stem cell (LSC) transplantation, however graft rejection and chronic inflammation lowers the success rate over long time....
متن کاملKeratin 13 is a more specific marker of conjunctival epithelium than keratin 19
Introduction To evaluate the expression patterns of cytokeratin (K) 12, 13, and 19 in normal epithelium of the human ocular surface to determine whether K13 could be used as a marker for conjunctival epithelium. Methods: Total RNA was isolated from the human conjunctiva and central cornea. Those transcripts that had threefolds or higher expression levels in the conjunctiva than the cornea wer...
متن کاملVariations of the Normal Human Limbal Stem Cells Detected by In Vivo Confocal Microscopy
Background To report normal variations of the limbal structures using in vivo laser scanning confocal microscopy. Methods: This was a retrospective study of fourteen eyes from 11 healthy individuals. Confocal imaging of cornea and limbus was performed using Heidelberg Retina Tomograph III Rostock Corneal Module. Results: The typical structure of the palisades of Vogt (POV) was detected ...
متن کاملComparative proteomics reveals human pluripotent stem cell-derived limbal epithelial stem cells are similar to native ocular surface epithelial cells
Limbal epithelial stem cells (LESCs) are tissue-specific stem cells responsible for renewing the corneal epithelium. Acute trauma or chronic disease affecting LESCs may disrupt corneal epithelial renewal, causing vision threatening and painful ocular surface disorders, collectively referred to as LESC deficiency (LESCD). These disorders cannot be treated with traditional corneal transplantation...
متن کامل